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In the present work, a model for a local description of the energy transfer phenomenon 
in two distinct f low regions, one consisting of a Newtonian incompressible fluid and the 
other represented by a binary (solid-fluid) saturated mixture, is proposed. Compatability 
conditions at the interface (pure-fluid-mixture) for momentum and energy transfer are 
also proposed and discussed. A particular case is simulated by using an iterative procedure 
with a finite-difference approach, in which the inlet temperatures of both the fluid (in the 
pure-fluid region) and the fluid constituent (in the mixture region) are the only boundary 
conditions prescribed in the x-direction. 

Representative results of centerline temperatures and temperature profiles are presented 
for the fluid in the pure-fluid region (the upper channel) as well as for both constituents 
in the mixture region (the lower channel), since thermal nonequilibrium is allowed. 
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I n t r o d u c t i o n  

In the present study, the energy transfer process in two distinct 
flow regions is modeled with the help of the continuum theory 
of mixtures, a generalization of continuum mechanics (which 
is not appropriate for a local description of phenomena such 
as heat transfer in a flow through a porous medium). One flow 
region is occupied by a Newtonian incompressible fluid only 
(the usual continuum-mechanics balance equations are 
obviously recovered for a single-constituent mixture). In the 
other region, a porous medium is saturated by the 
above-mentioned fluid, and the fluid and the porous medium 
are treated as continuous constituents of a binary mixture, 
coexisting superposed, each of them occupying simultaneously 
the whole volume of the mixture. The fluid constituent, like the 
fluid, is assumed to be Newtonian and incompressible, while 
the porous matrix, represented by the "solid constituent," is 
assumed to be rigid, homogeneous, isotropic, and at rest. 

Two similarly distinct flow regions are present in many 
relevant engineering situations, such as porous-bearing 
lubrication, flow of perforation mud in oil wells, and 
packed-bed heat exchangers (in which the porous matrix is only 
present in the vicinity of the hot-cold fluid interface, where the 
heat exchange is higher). 

Most studies dealing with transport in porous media employ 
a local volume-averaging technique, discussed in detail by 
Whitaker (1969), to describe quantities such as temperature, 
pressure, concentration, and the velocity components. This 
technique allows the use of the classical continuum mechanics 
approach. 

Vafai and Kim (1990) have used this approach and Darcy's 
law--with the addition of empirically determined terms 
(Brinkmann and Forchheimer extensions) to account for inertia 
and viscous effects and to satisfy the no-slip condition--as the 
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balance of linear momentum. They analyzed convective flow 
and heat transfer in two distinct flow regions (fluid and a 
fluid-saturated porous medium), aiming at a fundamental 
investigation of the interaction phenomena at the interface, 
where the continuity of velocities, pressure, deviatoric normal 
and shear stresses, temperature, and heat flux were imposed. 
Assuming steady-state flow and local thermal equilibrium, they 
simulated a problem by means of a control volume method, 
studying the effects of Darcy and Prandtl numbers, of an inertia 
parameter (related to the Forchheimer term), and of a 
conductivity ratio that relates the porous-medium effective 
conductivity to the fluid conductivity. 

Huang and Vafai (1993) have studied forced convection over 
a complex geometry consisting of multiple porous blocks 
attached to an impermeable wall. Two distinct flow regions are 
considered in this arrangement, which was used for flow and 
heat transfer control: the fluid and the fluid flowing through 
the porous blocks. A numerical investigation of the flow field 
and thermal characteristics, using a control volume method, 
was performed. 

Thermal nonequilibrium, which comes naturally when a 
mixture-theory approach is employed, could also have been 
considered in a continuum-mechanics approach associated 
with a local volume-averaging technique. Such an approach 
was employed by Vafai and Sozen (1990), who also used 
Erguns' correlation as the vapor-phase momentum equation, 
in order to analyze the forced convective flow of a gas through 
a packed bed of solid particles. They concluded that, in this 
case, local thermal equilibrium should not be considered for 
high values of Reynolds number (based on the diameter of the 
solid particles) or Darcy number. These two numbers have a 
much stronger influence on the validity of the local 
thermal-equilibrium hypothesis than the thermophysical 
properties. 

The use of mixture theory gives rise to new parameters 
(which are absent in a classical approach) in order to take into 
account the tbermomechanical interaction among the con- 
stituents. On the other band, mixture theory allows a local 
description of the flow and heat transfer processes in a porous 
medium, supported by a thermodynamically consistent theory, 
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which generalizes the classical continuum mechanics. Since 
both constituents are continuous, there exists simultaneously, 
at each spatial point, two temperatures and two velocities. The 
existence of two temperatures at a single point gives rise to an 
"energy-generation function" (which provides the thermal 
interaction) and the existence of two velocities gives rise to a 
"momentum-generation function" (which provides the dynami- 
cal interaction). Constitutive relationships for these generation 
functions, satisfying the Second Law of Thermodynamics, are 
used (Martins-Costa et al. 1992; Costa Mattos et at. 1993). 

To simulate the local energy transfer phenomenon in a 
two-region flow problem consisting of a pure-fluid region and 
a binary (solid-fluid) saturated mixture region, an algorithm 
developed by Martins-Costa et al. (1991) is employed. An 
iterative procedure, based on a finite-difference approach, is 
used to simulate the heat transfer process in a two-region flow 
between two parallel insulated plates, where the fluid inlet 
temperature (in the pure-fluid region) and the fluid-constituent 

inlet temperature (in the mixture region) are the only boundary 
conditions prescribed in the x-direction. 

Despite its simplicity, the procedure used is an effective way 
to perform a local simulation of the forced-convection heat 
transfer process that occurs when a fluid flows through two 
distinct regions: a pure-fluid region and a porous contiguous 
channel considering only realistic boundary conditions. 
Starting from known velocity fields (under certain conditions, 
these can be analytically determined), the forced-convection 
heating of a fluid flowing through the mentioned pure-fluid 
channel and porous contiguous channel in a two-dimensional 
(2-D) geometry (as shown in Figure 1) would give rise to a 
system of three second-order partial differential equations on 
both x- and y-variables. The structure of the energy equations 
allows this system to be solved with only two boundary 
conditions in the x-direction (one for each channel) and three 
in the y-direction, as well as the compatibility conditions at the 
interface of the pure fluid and the mixture. 

From a mathematical viewpoint, this statement may sound 
absurd. However, from a physical viewpoint, if the pure-fluid 
temperature or heat flux is prescribed at the superior boundary 
and the temperatures or heat fluxes of both constituents are 
prescribed at the inferior boundaries, (y-direction), and if the 
inlet temperatures of the fluid (in the superior channel) and the 
fluid constituent (in the inferior channel) are known, no 
additional boundary condition is required to determine the 
temperature fields of the fluid and both constituents. 

The procedure used in this study provides a solution for a 
system of three second-order partial differential equations, in 
two variables each, employing only five boundary con- 
ditions--three in the y-direction and only two in the 
x-direction--as well as the compatibility conditions at the 

N o t a t i o n  

c Specific heat, J/kg.K 
D Symmetrical part of the velocity gradient, 1/s 
DF Symmetrical part of the fluid-constituent velocity 

gradient, 1/s 
Da Darcy number 
g Specific gravity, m/s 2 
g~ Specific gravity associated with the ith constituent, 

m/s 2 
hi Upper-channel height, m 
h 2 Lower-channel height, m 
H Dimensionless height 
kF Fluid thermal conductivity, W/m.K 
ks Solid thermal conductivity, W/m.K 
K Specific permeability, m 2 
L Channel length, m 
mi Interaction force acting on the ith constituent, N/m 3 
n Unit outward normal 
p Pressure, N/m 2 
q Heat flux, W/m z 
q~ ith-constituent partial heat flux, W/m 2 
q" Heat supply, W/m 3 
q;" Heat supply to the ith-constituent, W/m 3 
R Internal heat-supply factor, W/ma.K 
t Tangent vector 
T Temperature, K 
T~ ith-constituent temperature, K 
U Moving plate velocity, m/s 
v Fluid velocity (vector field), m/s 
v x-component of fluid velocity, m/s 
VF Fluid-constituent velocity (vector field), m/s 
VF x-component of fluid-constituent velocity, m/s 

Average velocity for the pure-fluid region, m/s 
v* Dimensionless velocity relating pressure drop to 

moving plate velocity 
X Dimensionless x-variable 
Y Dimensionless y-variable 

Greek 

~F 

8, 
? 

0 
Oi 
2 
A 
P 
Pi 

G 

fll 
f12 

symbols 

Dimensionless velocity 
Fluid constituent dimensionless velocity 
Dimensionless thermal conductivity 
ith-constituent dimensionless thermal conductivity 
Aspect ratio 
Dimensionless internal heat supply factor 
Fluid viscosity, kg/m.s 
Dimensionless temperature 
ith-constituent dimensionless temperature 
Parameter depending on porous matrix 
Parameter related to mixture structure 
Fluid density (as a continuum), kg/m a 
ith-constituent density, kg/m 3 
Porosity 
Stress tensor, N/m 2 
ith-constituent partial stress tensor, N/m 2 
ith-constituent internal heat supply, W/m 3 
Open set representing pure fluid region 
Open set representing mixture region 

Subscripts 

F Fluid constituent 
i ith-constituent 
S Solid constituent 
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interface of the pure fluid and the mixture. In fact, an exhaustive 
number of examples taken into consideration have shown that 
the temperatures inside both channels are not affected by 
additional boundary conditions in the x-direction, which can 
even lead to unrealistic situations on the boundaries. 

M a t h e m a t i c a l  m o d e l  

If we represent the region occupied by the pure fluid by the 
open set flit, with boundary t3fl, and if we represent the region 
occupied by the mixture by the open set f2 ,  with boundary 
c~f2, then the mass balance for the considered phenomenon 
may be written as 

~p 
- - + d i v ( p v ) = 0  in f~ (1) 
~t 

ap~ 
- - + d i v ( p l v i ) = 0  in f2 ,  i = l , n  (2) 
~t 

in which n is the number of constituents in the mixture region, 
p is the actual fluid density in fit,  v is the fluid velocity in f t ,  
p~ is the ith constituent mass density in f z ,  and v~ is the ith 
constituent velocity in f2 .  The field p~ is locally defined as the 
ratio between the ith constituent mass and the respective 
volume of the mixture. 

Since the mass of each constituent is preserved, the mass of 
the mixture as a whole is automatically conserved. 

The balance of linear momentum is given by 

p ~ + ( g r a d v ) v  = d i v ~ + p g  in f t  (3) 

L Vt[avi ] P i / : -  + (grad v~)v~ = div ~i + mi + Pigi in ~')2, i = 1, n 

(4) 

in which ~ is the Cauchy stress tensor, a~ is the partial stress 
tensor associated with the ith constituent, g is a body force per 
unit mass, g~ is a body force per unit mass acting on the ith 
constituent, and m~ is an interaction force per unit volume 
acting on the ith constituent due to its interaction with the 
other constituents of the mixture. 

The momentum source mi arises from the existence of more 
than one velocity at each point in the mixture region. Since m/ 
is an internal contribution, the following must hold everywhere: 

£ m i = 0  in f 2  (5) 
i=1 

In the present study, the partial stress tensor is assumed to 
be symmetrical as the Cauchy stress tensor, satisfying 
automatically the angular momentum balance. 

The energy balance is given by 

pc + ( g r a d T ) . v  = - d i v q + q " + ~ . D  in f t  (6) 

pic t~  t + (grad Ti).v i = - d i v  qi + q[' + ~, + *i 'Di  

in f2 ,  i =  1, n (7) 

in which T is the fluid temperature in f t ,  T~ is the ith 
constituent temperature in f2 ,  c is the fluid specific heat, c~ the 
ith constituent specific heat, D is the symmetrical part of the 
velocity gradient in fit ,  Di is the symmetrical part of the ith 
constituent velocity gradient, q is the heat flux (per unit time 
and unit area) in f t ,  q, is the partial heat flux (per unit time 

and unit area) associated with the ith constituent in f2 ,  q" is 
an external heat supply (per unit time and unit volume), q;" is 
the external heat supply (per unit time and unit volume) to the 
ith constituent, and ~'i is an internal heat supply. 

The field ~,i represents the amount of energy, per unit time 
and unit volume, supplied to the ith constituent, arising from 
its thermal interaction with the remaining constituents of the 
mixture. Since ~b~ is an internal contribution, the following must 
hold everywhere (Martins-Costa et al. 1992, 1993): 

~ ~ , /=0  in f 2  (8) 
i=1 

In this study, the region [12 is occupied by a binary mixture 
(saturated porous medium) whose constituents are a New- 
tonian incompressible fluid and a rigid, isotropic, and 
homogeneous porous matrix at rest, with a porosity tp. 

Since the porous matrix is at rest, the continuity and 
momentum equations for the solid constituent (which 
represents the porous medium in the mixture) will not be 
solved. 

In addition, since the fluid is Newtonian (in f t  u ~"~2), the 
following constitutive equations are employed (Williams 1978): 

= - p l + 2 r / D  in f l  (9) 

av = --q~pl + 22(p2r/Dv in [12 (10) 
~2~/ 

m r -  - - v  F in f~2 (11) 
K 

where r/ is the actual fluid viscosity, K is the specific 
permeability, 2 is a scalar parameter depending on the porous 
matrix microstructure, and the index F refers to the fluid 
constituent. 

The heat flux in f l ,  the partial heat flux in f2 ,  and the 
internal supplies ~k F and ~k s (the latter referring to the solid 
constituent) are given by Martins-Costa et al. (1992) and Costa 
Mattos et al. (1993): 

q = - k  F grad T in f l  (12) 

qF = -AkF  tp grad TF in f2  (13) 

qs = -Aks(1 -- (P) grad T s in f 2  (14) 

~'r --- --~'s = R(Ts-- Tv) in [12 (15) 

in which kr is the Newtonian fluid thermal conductivity and 
Ks is the porous matrix thermal conductivity. In Equations 13 
and 14, A represents a scalar positive-valued parameter that 
may depend on both the internal structure and the kinematics 
of the mixture. In Equation 15, R is a positive-valued factor 
that depends not only on spatial position and on both 
constituents' thermal properties but also on the velocity of both 
constituents, accounting for the convective heat transfer. Since 
the solid constituent is supposed to be at rest, only the velocity 
of the fluid constituent would influence the factor R, but this 
influence will be neglected in the present study. 

The interface between the regions f l  and Q2 is defined by 
the set d f t -=  t)t c~ ~2.  At this interface, some compatibility 
conditions must be imposed in order to allow the solution of 
the problem. According to Williams (1978), since there is no 
flow across the interface, the following relations must hold: 

v = ~PVF (16) 

<port. t = 6Fn' t (17) 

in which n is an outward normal to d f  i and t is any tangent 
to d f  r The compatibility equations (Equations 16 and 17) 
simulate the experimental condition proposed by Beavers and 
Joseph (1967), which was confirmed and generalized by several 
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authors (see, e.g., Nield and Bejan 1992). The idealized model 
for a porous medium, employed by Taylor (1971) and 
Richardson (1971), gives theoretical support to Beavers and 
Joseph's condition. Equations 16 and 17, obtained from the 
solution of thermodynamically consistent equations (derived 
by means of a mixture-theory viewpoint) in both regions, do 
not suffer from the difficulty of matching the porous-medium 
flow equations with the Navier-Stokes equation, discussed by 
Nield and Bejan (1992). Williams (1978), based on a no-slip 
condition, concluded that the velocity should be zero on the 
solid parts of the boundary (since the porous matrix is at rest) 
and should match the fluid-diffusing velocity on the fluid parts 
of the boundary. He also supposed that both solid and fluid 
receive shearing stress from the fluid stream at the pure-fluid 
region. It should be noticed that, at the interface, the pure-fluid 
velocity is distinct from the fluid-constituent velocity (in the 
mixture region) when a mixture-theory viewpoint is considered. 

To assure that the temperature field is continuous and that 
the normal heat flux is both continuous and adequately 
distributed throughout the interface, the following compat- 
ibility conditions are imposed at the interface 0f~t: 

T = goT F + (1 - go)T s at c~fl~ (18) 

~0q'n = qF" I1 at df~1 (19) 

(1 - q~)q'n = qs" [] at 0f~x (20) 

where Equation 18 represents the continuity in the temperature 
field (the temperature of the fluid must be equal to the 
temperature of the mixture at the interface), while Equations 
19 and 20 represent the distribution of the heat flux from/to 
the mixture, at the interface. 

Vafai and Kim 0990) have imposed continuity of 

temperature and heat-flux fields, which could be considered 
analogous to Equations 18 to 21, provided that thermal 
nonequilibrium is allowed. 

Now, taking into account that 

t~ 1 - {(x, y) such that 0 < x < L, h 2 < y < h i + h2} 

~ z - { ( x , Y )  such that 0 < x < L ,  0 < y < h 2 }  

Of~t -= {(x, y) such that 0 < x < L , y = h 2 )  

and assuming that the flow is not affected by the thermal 
problem, the velocity fields in ft 1 and ft 2 may be analytically 
obtained, provided that a one-dimensional (l-D) steady-state 
horizontal flow is assumed. 

Denoting by v and vv the x-components of v and VF, and 
taking into account that Pv = q~P, the hydrodynamical problem 
(Equations 1 to 5, 9 to 11, 16, and 17) is represented by 

d2v Op 
t idy  2 t3x - O O < x < L, h2 < y < hl w h z (21) 

d2/)F Op q~2q 
2 t p 2 r / - - - - ~ 0 - - - - - - V F = 0  O < x < L, O < y < h 2 (22) 

dy 2 t3x K 

v = U  0 < x < L , y = h  l + h  2 (23) 

vv = 0 0 < x < L, y = 0 (24) 

v = gOVv 0 < X < L, y = h 2 (25) 

d v = 2q~ dVF 0 < x < L, y = h 2 (26) 
dy dy 

The solution of Equations 21 to 26, given by Saldanha da 
Gama and Sampaio (1983) 

h2 1 
1 .  1 .  

cosh( hz ~ ha - 2he -- hi - ~-a \ x / K 2 /  
\ 

1 ~ t g h ( ~  l+-- 
ht \ x / K 2 1  

for h 2 < y < ha + h2 (the pure-fluid region), is the fluid velocity, 
and the corresponding solution 

F _i ~ sinh( Y ~  l 
U/- ~o X/2 \,~-K2,] / + K Op rcosh(__y_y ~ _ 1] K 0p slnh(--~ vr . . . .  ' Y 

- - t g h  - -  + h  1 cosh - -  

/ c o s h {  h2 ) - 1 \  

x ) , , . .  

I+ I/~Ktgh(hi_) 

(27) 

(28) 
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for 0 < y < h 2 (the mixture region), is the fluid-constituent 
velocity. 

Assuming q" and q;:' equal to zero and neglecting 6. D and 
ev 'Dv ,  the energy equations (Equations 6 to 8, 12 to 15, and 
18 to 22) reduce to 

pCFv~TT=k F r 02T CO2T 1 
O < x < L ' h 2 < y < h l + h 2  

(29) 

COTF Ak ~CO2TF CO2TF-I 
~OpCFVF a~ = F~O[~-X2 + ~-y2 J + R(T~ -- TF) 

O < x < L , O < y < h  2 (30) 

co' l 0 = Ak,(l - q~)l:~-~ + + R(TF - Ts) 
L~x"  COy2 d 

O < x < L , O < y < h 2  (31) 

subject to the boundary conditions 

T = T O x = 0, h 2 < y < h t + h 2 (32) 

T F = TFO x = 0, 0 < y < h 2 (33) 

t?T 
- -  = 0 0 < x < L,  y = h i  + h2 (34)  
dy 

~TF 
- -  = 0 0 < x < L,  y = 0 (35)  
dy 

COTs 
- - = 0  O < x < L , y = O  (36) 
COy 

and to the compatibility conditions at the interface: 

T = (pT F + (1 -- (p)T s 0 < x < L, y = h 2 (37) 

cOT A coTF 0 < x < L, y = h 2 (38) 
COy COy 

COT k s COT s 
- -  = A - - - -  0 < x < L,  y = h 2 (39)  
COy kF COy 

The problem is put in a dimensionless form by using the 
following dimensionless variables: 

x y 
X = - Y - (40)  

L h t + h 2 

T T F T s 
0 = - -  0F = -  0 s = - -  (41) 

To To To 

t) /3 F 
= - =v = - -  (42) 

v 

k F kFA k s 1 - ~p 
fl - flF - -  - -  fls - - -  (43)  

pcF Lv pCF L~ pcF L~ ¢p 

L RL h 2 
? - - -  e -  H = - -  (44) 

hi + h2 pCFO~O hi + h2 

where ~, which represents an average velocity for the pure-fluid 
region, considering K = 0 and ~0 = 0 in the porous medium, is 
defined as 

1 1 ap 
= -  U------h~ (45) 

2 12r/COx 

Equations 29 to 31 yields 

COO Fa20 CO20] 
= ~-X = flL~--X-i + ? coy2j (46) 

rco'oF CO'oF] 
=F ~-~ = f l F ~  + ? COy2_] + ~(0s -- 0F) (47) 

rco 0s l 
0 =/~sE ~ + ~ ay2j + ~(0F - 0s) (48) 

where Equation 46 is valid for H < Y < 1, representing the 
pure fluid in the upper channel, and Equations 47 and 48 are 
valid for 0 < Y < H, representing both constituents in the 
lower channel. The problem is 
boundary conditions: 

0(0, Y ) = 0 o  for H < Y < I  

OdO, Y)=OFo for 0 <  Y < H  

90 (X, 1)-- 0 CO0F (X, 0) 0 
dY COY 

subject to the following 

(49) 

(50) 

CO0s X ~-~( ,0)=0 

for 0 < X <  1 (51) 

and the following compatibility conditions are verified at the 
interface: 

O(X, H) -- ~POF(X, H) + (1 -- ~P)0s(X, H) for 0 < X < 1 (52) 

COO X A ~0r 
~-y ( , H) = COy (X, H) for 0 < X < I  (53) 

COO X A ks co0S (x,  H) for 0 < X < I  (54) 
~ (  , H ) =  k F S Y  

N u m e r i c a l  m e t h o d  

The heat transfer problem (Equations 46 to 54) consists of a 
system of three second-order differential equations, on both 
X- and Y-variables, subject to three boundary conditions in 
the Y-direction, two boundary conditions in the X-direction, 
and three compatibility conditions at the interface that relate 
the fluid temperature to the temperatures of both constituents. 
It  should be noticed that the solid-constituent inlet (0s(0, Y)) 
and outlet (0s(1, Y)) dimensionless temperatures, as well as the 
fluid outlet (0(1, Y)) and the fluid-constituent outlet (0F(1, Y)) 
dimensionless temperatures, are not prescribed. 

From a mathematical viewpoint, a problem of this kind 
(Equations 46 to 54) consisting of three elliptic equations, on 
both X- and Y-variables, even if physically realistic, could give 
rise to an infinite number of solutions (John 1982). However, 
a great number of tested situations have shown that additional 
boundary conditions in the x-direction have no influence on 
both solid- and fluid-constituent bulk temperatures in the 
mixture region or on the fluid bulk temperature in the pure 
fluid region. 

An iterative procedure is used, so that three second-order 
equations on the x-variable (Equations 46 to 48) can be solved 
with the help of two boundary conditions in the x-direction, 
one for each considered region: the fluid inlet temperature in 
the pure-fluid region (Equation 49) and the fluid-constituent 
inlet temperature in the mixture region (Equation 50). The 
problem is treated as a sequence of modified problems in which 
the second-order derivatives on the x-direction, for the fluid 
and both constituents, are treated as previously known fields; 
t h a t  is ,  e n e r g y  e q u a t i o n s  o f  t h e  f l u i d  ( E q u a t i o n  4 6 )  a n d  o f  t h e  
f lu id  c o n s t i t u e n t  ( E q u a t i o n  4 7 )  a r e  t r e a t e d  as  a s e q u e n c e  o f  
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parabolic problems on the X-variable, while the solid- 
constituent energy equation (Equation 48) can be considered 
as a sequence of ordinary problems on the Y-variable. The 
original system of equations is modified to 

[0t d0 ~20]' [ ~ 2 0 ] ' - 1  
~ - ~' ~ J  = L~J (55) 

L 

OX y dy  z fl, (0s - or) L~--Tj (56) 

[ o o, ] : r - , r '  ,,7, 
- o Y  2 /is (0F - 0,) Lax2 j 

where the derivatives (~20/(~X 2, ~20F/l~X2, and d20s/dX2 are 
calculated from a previous iteration. 

Since no analytical solution to the system of Equations 55 
to 57 is known, numerical approximations to its solution are 
sought with the help of a finite-difference approach (Euvrard 
1987). For the diffusive terms, a central finite-difference-scheme 
discretization was used, while an "upwind" scheme was 
employed in the convective-term discretization. 

Since the temperature-coefficients matrix (associated with the 
modified system of Equations 55 to 57) is sparse, a grid 
description, in which each constituent temperature possesses 
two indexes according to its position on the grid, is used. Each 
iteration l, represented in such a way as to allow an effective 
storage scheme with memory reutilization, is then solved with 
the help of the Gauss-Seidel method. The approximations for 
the second-order derivatives of the fluid and both constituents 
are calculated from a previous (l - 1) iteration by means of a 
central finite-difference scheme. 

The procedure can be summarized in the following way: to 
start the scheme, initial values are estimated for the 
second-order derivatives with respect to X. This allows us to 
solve Equations 55 to 57 in order to obtain the dimensionless 
temperature fields: 0, 0 F, and 0s. These are stored and 
subsequently used to calculate new approximations for 
d20/#X 2, 820F/dX2, and a2Os/#X 2. These approximations are 
then employed in the next step to calculate new values for 0, 
0F, and 0s. These vectors are compared to the ones previously 
stored, and the process is carried on until convergence is 
achieved. 

Vafai and Kim (1990) have used a different procedure in 
order to disconsider upstream conditions: they employed a 
much longer computational domain, which enabled them to be 
sure that the conditions at the channel's outlet would not affect 
the bulk temperature. In the present work, on the other hand, 
different boundary conditions such as prescribed temperatures 
(for both constituents and the fluid, varying from 0 to 1) and 
prescribed heat fluxes were employed at the outlet. It was 
verified that all those tested boundary conditions cause no 
alteration on the temperature profiles except for the last nodes 
in the X-direction. 

The control volume method has already been successfully 
applied to problems arising from a mixture-theory approach 
when the hydrodynamical and thermal problems were coupled 
(Martins-Costa et al. 1994). 

R e s u l t s  

Figure 2 shows the dimensionless velocity profiles for the pure 
fluid (~, in the pure-fluid region) and for the fluid constituent 
(~r, in the mixture region). The variation of ~F can only be 
observed in a detail with a modified scale, as shown in the 
lower portion of the figure. 
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Figure 2 Dimensionless velocities • and ~F for e = 2.64 x 10 -3, 
7=30, H=l /2 ,  Da=2.5x10 -s,v*=20/3 

Centerline dimensionless temperatures (for each channel) 
versus the longitudinal coordinate X for both the pure-fluid 
and the mixture regions (this one with two distinct temperature 
profiles, one for each constituent) are presented, as well as the 
temperature profiles at a central section for some representative 
cases. Two long, adjacent channels (both of the same height) 
are considered; the fluid dimensionless inlet temperature (in the 
upper channel) is 1, and the fluid-constituent dimensionless 
inlet temperature (in the lower channel) is 0. A coarse grid, with 
seven nodes in the x-direction and 13 nodes in the y-direction, 
was used in the numerical approximation. 

At this point, it is appropriate to define Darcy's number and 
a dimensionless velocity v* that is based on the pure-fluid 
average velocity and that relates the effect of pressure drop to 
the effect of the moving plate velocity. These definitions are as 
follows: 

K 
Da = - -  (58) 

v* (59) 
~x 6t/U 

Figures 3 to 5 show the influence of the dimensionless 
velocity r* on the dimensionless temperatures of the fluid and 
of both constituents. Comparing Figures 3 and 4 (in which the 
only varying parameter is Darcy's number, which is 2.5 x 10- 3 
in Figure 3 and 2.5 x 10 -5 in Figure 4), it can be observed 
that, for small values of permeability, both constituents' 
temperatures tend toward the fluid temperature (which suffers 
almost no variation along the superior channel). It is important 
to mention that the scale of the temperature profile in Figure 
4 has been modified. Comparing Figures 4 (v* = 2/3) and 5 
(v* --- 20/3), the influence of the pressure drop may be observed, 
since it is ten times greater in Figure 5 than in Figure 4. In 
Figure 5, the temperature profiles in the central section are very 
distinct. 
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The influence of the thermal conductivity on the tempera- 
tures may be observed by comparing Figure 5 to Figure 6, in 
which the fluid thermal conductivity was made ten times 
smaller than that used in all the remaining figures (fir is 
5.5 x 10 -8 and 5.5 x 10 -9, respectively, in Figures 5 and 6). 

In Figure 7, the temperature profiles in the central section 
and the dimensionless temperatures for each channel are 
plotted for v* = 2 ,  which is a value ten times smaller than that 
used for v* in Figure 3. The influence of the upper channel (the 
hot channel) is stronger for smaller velocities. 

The influence of the porous matrix permeability may be 
observed by comparing Figure 7 to Figure 8, in which Darcy's 
number is made 100 times smaller. A comparison between 
Figures 4 and 8 shows the influence of the dimensionless 
velocity v*, which is made ten times smaller in Figure 8. In 
both figures, modified scales are used for the central-section 
temperature profiles. For smaller velocities, all the tempera- 
tures tend to a common value, before the central section. 

The influence of the inlet temperatures in both channels may 
be observed by comparing Figure 3 to Figure 9. Figure 9 was 
plotted for the same parameters used in Figure 3, except for 
the boundary conditions. The fluid inlet temperature (in the 
pure-fluid region) is made 0, while the fluid-constituent 
inlet temperature (in the mixture region) is made 1. 

F i n a l  r e m a r k s  

In this study, the energy transfer in two distinct flow regions 
is modeled, in a context of thermal nonequilibrium based on 
a systematic local theory: the continuum theory of mixtures. 
In the porous region, both fluid and solid (the porous matrix) 
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are treated as continuous constituents of a binary mixture, and 
the classical (continuum mechanics) balance equations are 
recovered in the pure-fluid region, where the mixture is reduced 
to a single constituent. 

Conditions at the interface between the pure fluid and the 
mixture were imposed in order to assure the continuity of the 
temperature and the heat flux, but the heat-flux decomposition 
was arbitrarily chosen. 

An iterative procedure, in which the inlet temperatures for 
both the fluid and the fluid constituent are the only boundary 
conditions prescribed in the x-direction, simulates the problem 
by using available boundary information only. In fact, this 
procedure estimates, indirectly, the three missing boundary 
conditions. 

Most of the studies on transport phenomena in porous media 
use a volume-averaging technique based on a continuum 
mechanics approach. A different approach is used in this study. 
The continuum theory of mixtures, which generalizes the 
classical continuum mechanics, allows the construction of a 
thermodynamically consistent local model by means of a 
systematic procedure to describe the transport phenomena in 
two distinct flow regions: a fluid and a fluid-saturated porous 
medium. The cost associated with the use of this mixture theory 
is not high. In fact, the only changes required are a few new 
definitions and some new terms in the balance equations, such 
as the thermal interaction term ($). 
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